

SunKrist Geology and Research Journal

Research Article Volume: 2, Issue: 1 Scientific Knowledge

On Accounting for Evaporation or Infiltration Free Surface in Some Problems of Filtration Theory

Bereslavskii Eduard Naumovich*

Saint Petersburg, State University of Civil Aviation, Russia

1. Abstract

Annotation. The following filtration flows with unknown free boundaries are investigated:

- in case of a flow past the Zhukovsky groove in the case when the soil layer is underlain along its entire length with an impermeable base and evaporation from the free surface occurs.
- in case of a flow past the Zhukovsky groove in the case when the underlying layer is a completely well-permeable aquifer and infiltration occurs on the free surface.
- when groundwater moves in a rectangular bridge with a partially impenetrable vertical wall in the presence of evaporation from the free surface.
- when groundwater moves to an imperfect gallery in the presence of evaporation from the free surface.

2. Introduction

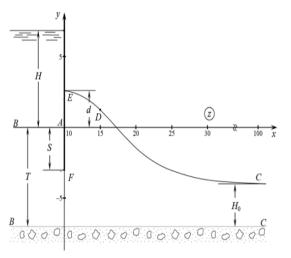
Within the theory of the flat established filtering of an incompressible fluid under Darci's law in homogeneous and isotropic soil some tasks connected with currents in the presence of evaporation or infiltration on a free surface of subsoil waters are considered.

2.1. Currents at flow of a groove Zhukovsky

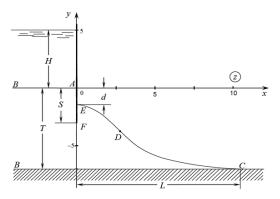
The task about flow of a groove was for the first time studied by Zhukovsky NE [1] where Kirchhoff's method altered by it in the theory of streams was used for a solution of tasks with a free surface and special analytic function which is widely used in the theory of filtering is entered. Since function, and a task and a groove bear a name of Zhukovsky [2 - 6]. Work [1] opened a possibility of mathematical modeling of the movement of subsoil waters under Zhukovsky's groove and laid the foundation for researches of the specified class of filtrational currents (see, for example, reviews [2 - 6].

It should be noted that in tasks about flow of a groove of Zhukovsky application of function of Zhukovsky only then results in effective results when in addition to a free surface the border of area of a current contains only horizontal lines of equal potential and vertical lines of current (Vedernikov VV, Nelson Furriers FB, Numerov SN, Aravin VI, etc.). However, in actual practice hydrotechnical construction, [2–5] the irrigated agriculture [2, 4, 7], etc. directly under integumentary deposits along with horizontal pressure head water-bearing layers more high-permeability [7] also horizontal waterproof inclusions often meet that radically affects the nature of filtrational currents [8 - 12].

At the same time so far, there are no works devoted to 'Corresponding author: Bereslavskii Eduard Naumovich, Saint Petersburg State, University of Civil Aviation, Russia, Email: eduber@mail.ru


Received Date: January 13, 2021; Accepted Date: January 14, 2021; Published Date: January 29, 2021

SunKrist Geol Res J Volume 2(1): 2021


a special research of impact of evaporation or infiltration on filtrational processes. Accounting of these important physical factors for the present did not become broad property of exact analytical solutions. In the presented work on the example of two limit filtrational schemes which arise at flow of a groove of Zhukovsky, the impact of evaporation or infiltration on a current picture is studied.

The first limit scheme corresponds to a case when the layer of earth on all the extent is spread by the impenetrable horizontal basis and from a free surface there is a uniform evaporation of intensity ϵ (0 < ϵ <1). The current is provided with water inflow from the left part of a band of flooding with a liquid layer, invariable on time. As the right edge of a band of flooding serves the impenetrable vertical screen in the form of a groove of Zhukovsky which basis is located in layer, at the same time the static height of a capillary raising of a subsoil water can be considered (Figure 1a).

In the second limit scheme the layer of earth is spread by well permeable pressure head aquifer in which pressure has constant H_0 value, and on a free surface there is a uniform infiltration of intensity ϵ . Far from a groove (at $x \to \infty$) the curve of a depression is horizontal and located at H_0 height over an aquifer.

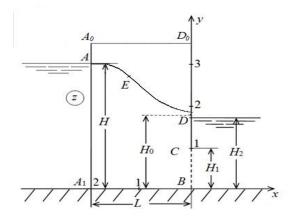

Figure 1a: The current picture calculated at $\varepsilon = 0.6$, $h_c = 0.5$, T = 7, S = 3, H = 5.

Figure 1b: The current picture calculated at $\varepsilon = 0.6$, T = 7, S = 3, H = 7, $H_0 = 3$ if $x_C = 100$.

2.2. Currents in a rectangular jumper with partially impenetrable vertical wall and to imperfect gallery

The exact solution of a task on a fluid influx to the imperfect well with the flooded filter (i.e., an axisymmetric task) or the tubular well representing an impenetrable pipe with the filter in some (usually lower) its part is connected with great mathematical difficulties and so far, is not found. Therefore, in due time as first approximation to a solution of similar tasks by P.Ya. Polubarinova-Kochina, Pryazhinska, V.A. Postnov and V.N. Emikh [2, 6, 7, 17, 18] considered some corresponding flat task analogs about filtering in a rectangular jumper with partially impenetrable vertical wall and to imperfect gallery. It should be noted that areas of values of complex speed in the specified cases allow to apply by means of inversion at a solution Christoffel-Schwartz's formula.

Figure 2: The current picture in a rectangular jumper calculated at $\varepsilon = 0.5$, H = 3, L = 2, $H_1 = 1$, $H_2 = 1.4$.

In work the exact analytical solution of a task on a current of subsoil waters in a rectangular jumper with slopes of A_0A_1 and D_0B , width of L located on the impenetrable horizontal basis of length of L is given. Water height is equal in an upper reach to H, lower reach with water level of H_2 , having partially impenetrable vertical wall CD (screen), adjoins a basis sole. The upper bound of area of the movement is free pover khnost AD which is coming out with which there is a uniform evaporation to intensity ϵ (Figure. 2). In the considered area of complex speed, unlike [2, 6, 7, 17, 18], there are not rectilinear, but circular polygons that does not give the chance to use classical integral of Christoffel-Schwartz.

The task solution on a current to the imperfect well formally turns out from a task solution on filtering in a rectangular jumper with partially impenetrable vertical wall in case of its infinite width, i.e. at $L=\infty$ [19, 20].

3. Technique of solutions

For studying of the specified currents in the presence of evaporation or infiltration on a free surface the mixed multiple parameter boundary value problem of the theory of analytic functions which solution is carried out with use of the method of P.Ya. Polubarinova-Kochina [2 - 7] based on application of the analytical theory of linear differential equations of a class of Fuchs are formulated. And also [21 - 23] ways of conformal mapping of a special type of circular polygons [24] developed for areas which are very typical for tasks of the theory of filtering. Accounting of characteristics of the considered classes of areas of the hodograph of speed allowed to present solutions of tasks in the closed form through elementary functions that does their use the simplest and convenient in practice.

4. Conclusion

On the basis of the studied model's calculation algorithms are developed:

heights of a raising of a subsoil water behind
 Zhukovsky's groove at it required, width of capillary

spreading of liquid on a water emphasis (in scheme 1) and also values of a filtrational expense.

 ordinates of exit point of a curve depression on the screen, a filtrational expense and coordinates of points of a free surface when filtering in a rectangular jumper and to imperfect gallery.

The received results give an idea (at least qualitatively) of possible dependence of characteristics of a current by filtering consideration already to the imperfect well or a tubular well.

5. References

- 1. Zhukovsky NE. Leakage of water through dams. M Gostekhizdat. 1950; 7: 297-332.
- 2. Polubarinova-Kochina P Ya. Theory of the movement of subsoil waters. M Gostekhizdat 1952; 664-676.
- 3. Aravin VI, Numerov SN. The theory of the movement of liquids and gases in the non-deformable porous environment. M Gostekhizdat. 1953; 616.
- 4. Development of researches on the theory of filtering in the USSR (1917–1967). M Science, 1967; 545.
- 5. Mikhaylov GK, Nikolayevsky VN. The movement of liquids and gases in porous environments. Mechanics in the USSR in 50 years. M Science, 1970: 585-648.
- Kochina P Ya. Chosen works.
 Hydrodynamics and theory of filtering. M Science 1991; 351.
- 7. Polubarinova-Kochina P Ya, Pryazhinskaya VG, Emikh VN. Mathematical methods in questions of irrigation M Scienc. 1969.
- 8. Bereslavskii EN. About some hydrodynamic models connected with a problem of Zhukovsky about flow of a groove. Dokl. RAS. 2013; 448: 529-533.
- 9. Bereslavskii EN. About some mathematical models connected with a problem of Zhukovsky about flow of a groove. Applied mathematics and mechanics. 2014; 78: 394-400.
- Bereslavskii EN. Modeling the Movement of Groundwater from the Pits, Surrounded with Tongues

- of Zhukovsky. International Journal of Theoretical and Applied Mathematics 2017; 3: 124-137.
- 11. Bereslavskii EN. Effect of Evaporation or Infiltration on the Free Surface of Groundwater in Certain Problems of Underground Hydromechanics. American Journal of Applied Mathematics and Statistics. 2017; 5:159-163.
- 12. Bereslavskii EN. Application of Method Polubarinova-Kochina for Research of Groundwater Motion from Ditcheshences Tongue Zhukovsky. International Journal of Mathematical Sciences: Advance and Applications. 2017; 8: 11-28.
- 13. Pryazhinskaya VG. The movement of subsoil waters in a rectangular jumper with an impenetrable vertical wall. Izv. Academy of Sciences of the USSR. Mechanics and mechanical engineering. 1964; 2: 41-49.
- 14. Polubarinova-Kochina P Ya, Postnov VA, Emikh VN. The established filtering to imperfect gallery in non-pressure layer. Izv. Academy of Sciences of the USSR. Mechanics of liquid and gas. 1967; 4: 97-100.
- 15. Bereslavskii EN, Dudina LM. About the movement of subsoil waters to imperfect gallery in the presence of evaporation from a free surface. Mathematical modeling, 2018; 30: 99-109.
- 16. Bereslavskii EN, Dudina LM. On Ground Water Flow to an Imperfect Gallery: Case of Evaporation from a Free Surface. Mathematical Models and Computer Simulations. 2018; 10: 601-608.
- 17. Bereslavskii EN, Polubarinova-Kochina P Ya. About some equations of a class of Fuchs in

- gidro-and aeromechanics. Izv. RAS. Mechanics of liquid and gas. 1992; 5: 3-7.
- 18. Polubarinova-Kochina P Ya, Bereslavskii EN, Kochina NN. Analytical theory of linear differential equations of a class of Fuchs and some problems of underground hydromechanics. M Ying t of mechanics problems. 1996; 567: 122.
- 19. Bereslavskii EN, Polubarinova-Kochina P Ya. About the differential equations of a class of Fuchs which are found in some problems of mechanics of liquids and gases. Izv. RAS. Mechanics of liquid and gas. 1997; 5: 9-17.
- 20. Bereslavskii EN. About the differential equations of a class of Fuchs connected with conformal mapping of circular polygons in polar grids. Differential equations. 1997; 33: 296-301.
- 21. Bereslavskii EN. About integration in the closed form of some differential equations of a class of Fuchs which are found in gidro-and aeromechanics. Dokl. RAS. 2009; 428: 439-443.
- 22. Bereslavskii EN. About accounting of infiltration or evaporation from a free surface by method of circular polygons. Applied mathematics and mechanics. 2010; 74: 239-251.
- 23. Bereslavskii EN. About integration in the closed form of some differential equations of a class of Fuchs connected with conformal mapping of circular pentagons with a section. Differential equations. 2010; 46: 459-466.
- 24. Bereslavskii EN. About application of the equations of a class of Fuchs for calculation of filtering from channels and sprinklers. Applied mathematics and mechanics. 2013; 77: 711-724.

Citation: Bereslavskii Eduard Naumovich. On Accounting for Evaporation or Infiltration Free Surface in Some Problems of Filtration Theory. SunKrist Geol Res J. 2021; 2: 1002.

Copy Right: © 2021 Bereslavskii Eduard Naumovich. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.